Olá, Sejam Bem-vindos

Muito obrigado por estarem acessando esse blog. Ele foi feito com especialmente para vocês, meus alunos, para servir como uma ferramenta de comunicação entre nós. Nesse espaço, vocês terão a oportunidade de tirar dúvidas referentes às aulas de Matemática, pedir ajuda em resoluções de exercícios, ter acesso a diversas informações sobre a matéria, e descobrir diversas coisas fantásticas sobre o mundo matemático.

Sintam-se à vontade para comentar, postar sugestões e/ou observações sobre o blog.
Meu objetivo é que ele tenha a cara de vocês!
Espero atender os pedidos e sugestões de todos, na medida do possível. Que esse blog seja um canal de informações, e que possa tornar-se um espaço de interação, de aprendizagens, e de reflexão através de textos que publicarei aqui também.

Vamos unir esforços para que este seja um ambiente agradável para que voltem muitas outras vezes!

E, mais uma vez, bem-vindos!!!!


quinta-feira, março 18, 2010

A021 - Conjunto dos Números Reais (R)

O conjunto dos números reais surge para designar a união do conjunto dos números racionais e o conjunto dos números irracionais. É importante lembrar que o conjunto dos números racionais é formado pelos seguintes conjuntos: Números Naturais e Números Inteiros. Vamos exemplificar os conjuntos que unidos formam os números reais. Veja:

Números Naturais (N): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ....
Números Inteiros (Z): ..., –8, –7, –6, –5, –4, –3, – 2, –1, 0, 1, 2, 3, 4, 5, 6, 7, 8, .....
Números Racionais (Q): 1/2, 3/4, 0,25, –5/4,
Números Irracionais (I): √2, √3, –√5, 1,32365498...., 3,141592....


Podemos concluir que:

- A união dos núemros racionais (Q) e dos números irracionais (I) foram o conjunto dos números reais.

- A intersecção dos conjuntos Q e I é vazio, porque eles sçao conjuntos distintos, ous eja, não posseum nenhum elemento em comum.


Os números reais podem ser representados por qualquer número pertencente aos conjuntos da união acima. Essas designações de conjuntos numéricos existem no intuito de criar condições de resolução de equações e funções, as soluções devem ser dadas obedecendo aos padrões matemáticos e de acordo com a condição de existência da incógnita na expressão.


FONTE: http://www.brasilescola.com/matematica/numeros-reais.htm


A020 - Conjunto dos Números Irracionais (I)



Números irracionais: presentes no
desenvolvimento da Matemática


A história dos números reais não é recente, eles foram surgindo ao longo de inúmeras descobertas Matemáticas, um dos primeiros irracionais está diretamente ligado ao Teorema de Pitágoras, o número √2 (raiz quadrada de dois) surge da aplicação da relação de Pitágoras no triângulo retângulo com catetos medindo 1 (uma) unidade.


Nessa época, o conhecimento permitia extrair somente a raiz de números que possuíam quadrados inteiros, por exemplo, 42 = 16, portando √16 = 4 e no caso de √2 não existia um número que, elevado ao quadrado, resultasse 2.


Outro irracional surgiu da relação entre o comprimento da circunferência e o seu diâmetro, resultando um número constante igual a 3,141592....., representado pela letra grega π (lê-se pi).

O número de Ouro também é considerado irracional, através de pesquisase observações o Matemático Leonardo de Pisa, mais conhecido como Fibonacci, estabeleceu a seguinte sequência numérica: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .... Essa sequência é formada obedecendo a uma montagem lógica, observe:

1
1 + 1 = 2
2 + 1 = 3
3 + 2 = 5
5 + 3 = 8
8 + 5 = 13
13 + 8 = 21
21 + 13 = 34
34 + 21 = 55

Note que o próximo número da sequência é formado através da soma entre o atual e seu sucessor. Nessa sequência numérica, o número irracional surge da divisão entre um elemento e seu antecessor, a partir do número 21, veja:

5 : 3 = 1,666666.....
8 : 5 = 1,6
13 : 8 = 1,625
21 : 13 = 1,6153846153846153846153846153846 ...
34 : 21 = 1,6190476190476190476190476190476 ...
55: 34 = 1,6176470588235294117647058823529 ...

John Napier, matemático que intensificou os estudos sobre logaritmos, desenvolveu uma expressão que, ao ser calculada, resulta em um número irracional:

O número irracional não admite representação na forma de fração (contrário dos números racionais) e também quando escrito na forma de decimal é um número infinito e não periódico.

Exemplos

π = 3,141592653589793238462... no número pi, após a virgula, não existe formação de períodos, por isso é considerado irracional.

0,232355525447... é infinito e não é dízima periódica (pois os algarismos depois da vírgula não formam períodos), então é irracional.

2,102030569... não admite representação fracionária, pois não é dízima periódica.

Se utilizarmos uma calculadora veremos que √2 , √3 , √5, √7, entre outros, são valores que representam números irracionais.

A representação do conjunto dos irracionais é feita pela letra I maiúscula.


FONTE: http://www.brasilescola.com/matematica/numeros-irracionais.htm

A019 - Conjunto dos Números Racionais (Q)



Interseção dos conjuntos: Naturais, Inteiros e Racionais.

Os números decimais são aqueles números que podem ser escritos na forma de fração.

Podemos escrevê-los de algumas formas diferentes:
Por exemplo:

♦ Em forma de fração ordinária: ; ; e todos os seus opostos.

Esses números tem a forma com a , b Z e b ≠ 0.

♦ Números decimais com finitas ordens decimais ou extensão finita:



Esses números têm a forma com a , b Z e b ≠ 0.

♦ Número decimal com infinitas ordens decimais ou de extensão infinita periódica. São dízimas periódicas simples ou compostas:



As dízimas periódicas de expansão infinita, que podem ser escritas na forma : com a, b Z e b ≠ 0.

O conjunto dos números racionais é representado pela letra Q maiúscula.

Q = {x = , com a Z e b Z*}



►Outros subconjuntos de Q:

Além de N e Z, existem outros subconjuntos de Q.

Q* ---------- É o conjunto dos números racionais diferentes de zero.

Q+ ---------- É o conjunto dos números racionais positivos e o zero.

Q- ----------- É o conjunto dos números racionais negativos e o zero.

Q*+ ---------- É o conjunto dos números racionais positivos.

Q*- ----------- É o conjunto dos números racionais negativos.


► Representação Geométrica



Entre dois números racionais existem infinitos outros números racionais.


FONTE: http://www.brasilescola.com/matematica/numeros-racionais.htm



A018 - Conjunto dos Números Inteiros (Z)



Interseção do conjunto dos naturais e dos inteiros.

Pertencem ao conjunto dos números inteiros os números negativos, os números positivos e o zero. Fazendo uma comparação entre os números naturais e os inteiros percebemos que o conjunto dos naturais está contido no conjunto dos inteiros.

N = { 0,1,2,3,4,5,6, ... }

Z = { ... , -3,-2,-1,0,1,2,3,4, ... }

N Z

O conjunto dos números inteiros é representado pela letra Z maiúscula. Os números positivos são representados com o sinal de (+) positivo na frente ou com sinal nenhum (+2 ou 2), já os números negativos são representados com o sinal de negativo (-) na sua frente (-2).

►Os números inteiros são encontrados com freqüência em nosso cotidiano, por exemplo:

♦ Exemplo 1:

Um termômetro em certa cidade que marcou 10°C acima de zero durante o dia, à noite e na manhã seguinte o termômetro passou a marcar 3°C abaixo de zero. Qual a relação dessas temperaturas com os números inteiros?

Quando falamos acima de zero, estamos nos referindo aos números positivos e quando falamos dos números abaixo de zero estamos referindo aos números negativos.

+10° C ------------- 10° C acima de zero
- 3° C --------------- 3° C abaixo de zero

♦ Exemplo 2:

Vamos imaginar agora que uma pessoa tem R$500,00 depositados num banco e faça sucessivas retiradas:

• dos R$500,00 retira R$200,00 e fica com R$300,00

• dos R$300,00 retira R$200,00 e fica com R$100,00

• dos R$100,00 retira R$200,00 e fica devendo R$ 100,00

A última retirada fez com que a pessoa ficasse devendo dinheiro ao banco. Assim:

Dever R$100,00 significa ter R$100,00 menos que zero. Essa dívida pode ser representada por – R$100,00.

Oposto de um número inteiro



O oposto de um número positivo é um número negativo simétrico. Por exemplo: o oposto de +2 é -2; o oposto de -3 é +3.

O conjunto dos números inteiros possui alguns subconjuntos:

- Inteiros não – nulos
São os números inteiros, menos o zero.
Na sua representação devemos colocar * ao lado do Z.
Z* = {..., -3, -2, -1, 1, 2, 3,...}

- Inteiros não positivos
São os números negativos incluindo o zero.
Na sua representação deve ser colocado - ao lado do Z.
Z_ = {..., -3, -2, -1, 0}

- Inteiros negativos (não positivos e não-nulos)
São os números inteiros do conjunto do Z_ excluindo o zero.
Na sua representação devemos colocar o _ e o * ao lado do Z.
Z*_ = {..., -3, -2, -1}

- Inteiros não negativos
São os números positivos incluindo o zero.
Na sua representação devemos colocar o + ao lado do Z.
Z + = { 0,1 ,2 ,3, 4,...}
O Conjunto Z + é igual ao Conjunto dos N

- Inteiros positivos (não negativos e não - nulos)
São os números do conjunto Z+, excluindo o zero.
Na sua representação devemos colocar o + e o * ao lado do Z.
Z* + = {1, 2, 3, 4,...}

OBS.: O Conjunto Z* + é igual ao Conjunto N*


FONTE: http://www.brasilescola.com/matematica/numeros-inteiros.htm



A017 - Conjunto dos Números Naturais (N)


Pertencem ao conjunto dos naturais os números inteiros positivos incluindo o zero. Representado pela letra N maiúscula. Os elementos dos conjuntos devem estar sempre entre chaves.
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... }

- Quando for representar o Conjunto dos Naturais não – nulos (excluindo o zero) devemos colocar * ao lado do N.
Representado assim:
N* = {1, 2,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12, ... }

A reticência indica que sempre é possível acrescentar mais um elemento.
N = {0, 1, 2, 3, 4, 5, 6, ...} ou N = {0, 1, 2, 3, 4, 5, 6, 7, ... }

Qualquer que seja o elemento de N, ele sempre tem um sucessor. Também falamos em antecessor de um número.
• 6 é o sucessor de 5.
• 7 é o sucessor de 6.
• 19 é antecessor de 20.
• 47 é o antecessor de 48.
Como todo número natural tem um sucessor, dizemos que o conjunto N é infinito.

Quando um conjunto é finito?
O conjunto dos números naturais maiores que 5 é infinito: {6, 7, 8, 9, ...}
Já o conjunto dos números naturais menores que 5 é finito: {0, 1, 2, 3, 4}
Veja mais alguns exemplos de conjuntos finitos.
• O conjunto dos alunos da classe.
• O conjunto dos professores da escola.
• O conjunto das pessoas que formam a população brasileira.


FONTE: http://www.brasilescola.com/matematica/numeros-naturais.htm



M008 - Pensamentos


"Sempre me pareceu estranho que todos aqueles que estudam seriamente esta ciência acabam tomados de uma espécie de paixão pela mesma. Em verdade, o que proporciona o máximo de prazer não é o conhecimento e sim a aprendizagem, não é a posse mas a aquisição, não é a presença mas o ato de atingir a meta."


DV004 - O Professor está Sempre Errado


Quando…
É jovem, não tem experiência.
É velho, está superado.
Não tem automóvel, é um coitado.
Tem automóvel, chora de “barriga cheia”.
Fala em voz alta, vive gritando.
Fala em tom normal, ninguém escuta.

Não falta às aulas, é um “Caxias”.
Precisa faltar, é “turista”
Conversa com outros professores, está “malhando” os alunos.
Não conversa, é um desligado.
Dá muita matéria, não tem dó dos alunos.
Dá pouca matéria, não prepara os alunos.

Brinca com a turma, é metido a engraçado.
Não brinca com a turma, é um chato.
Chama à atenção, é um grosso.
Não chama à atenção, não sabe se impor.

A prova é longa, não dá tempo.
A prova é curta, tira as chances dos alunos.
Escreve muito, não explica.
Explica muito, o caderno não tem nada.

Fala corretamente, ninguém entende.
Fala a “língua” do aluno, não tem vocabulário.
Exige, é rude.
Elogia, é debochado.

O aluno é reprovado, é perseguição.
O aluno é aprovado, “deu mole”.

É, o professor está sempre errado mas,
se você conseguiu ler até aqui, agradeça a ele!


Fonte: Revista do professor de Matemática 36, 1988


V003 - Conjuntos Numéricos

Aqui agora vocês tem links de uma video aula dividida em três partes
sobre conjuntos numéricos, para que vocês relembrem particulares
dos números naturais, inteiros, racionais,
irracionais e reais.

Conjuntos Numéricos - Parte 1

Conjuntos Numéricos - Parte 2

Conjuntos Numéricos - Parte 3 (Final)


C006 - Você sabe o que são números amigáveis?

Números amigáveis são pares de números onde um deles é a soma dos divisores do outro.

Por exemplo, os divisores de 220 são 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 e 110, cuja soma é 284.

Por outro lado, os divisores de 284 são 1, 2, 4, 71 e 142 e a soma deles é 220..

Fermat descobriu também o par 17.296 e 18.416.

Descartes descobriu o par 9.363.584 e 9.437.056.