Olá, Sejam Bem-vindos

Muito obrigado por estarem acessando esse blog. Ele foi feito com especialmente para vocês, meus alunos, para servir como uma ferramenta de comunicação entre nós. Nesse espaço, vocês terão a oportunidade de tirar dúvidas referentes às aulas de Matemática, pedir ajuda em resoluções de exercícios, ter acesso a diversas informações sobre a matéria, e descobrir diversas coisas fantásticas sobre o mundo matemático.

Sintam-se à vontade para comentar, postar sugestões e/ou observações sobre o blog.
Meu objetivo é que ele tenha a cara de vocês!
Espero atender os pedidos e sugestões de todos, na medida do possível. Que esse blog seja um canal de informações, e que possa tornar-se um espaço de interação, de aprendizagens, e de reflexão através de textos que publicarei aqui também.

Vamos unir esforços para que este seja um ambiente agradável para que voltem muitas outras vezes!

E, mais uma vez, bem-vindos!!!!


quarta-feira, agosto 18, 2010

Inequações-Quociente


EXEMPLO 1:

Na resolução da inequação quociente utilizamos os mesmos recursos da inequação produto, o que difere é que, ao calcularmos a função do denominador, precisamos adotar valores maiores ou menores que zero e nunca igual a zero. Observe a resolução da seguinte inequação quociente:



Resolver as funções y1 = x + 1 e y2 = 2x – 1, determinando a raiz da função (y = 0) e a posição da reta (a > 0 crescente e a <>1 = x + 1
x + 1 = 0
x = –1




y2 = 2x – 1
2x – 1 = 0
2x = 1
x = 1/2




Com base no jogo de sinal concluímos que x assume os seguintes valores na inequação quociente:
S = { x e R / -1 <>





EXEMPLO 2:

Página 3


Página 3


Sem precisar traçar os gráficos, podemos esboçá-los, conhecendo as raízes e o crescimento de cada uma, olhando para o sinal do coeficiente de x.

A) coeficiente de x = -1 < raiz =" 2">
Página 3


B) coeficiente de x = 2 > 0
Função crescente
Raiz =


Página 3


Atenção: Não é o sinal da raiz que determina o crescimento ou decrescimento da função, mas o sinal do coeficiente de x. Esse é um erro bem comum! Cuidado!

Estudados os sinais, vamos ao quadro de sinais:



Página 3


É importante notar: apesar de querermos os valores de x que tornam o quociente negativo ou nulo, não devemos incluir nunca na solução o valor de x que anula o denomidador da fração (a raiz da expressão do denominador), pois não existe fração com denominador nulo. Esse é outro erro comum!

Logo, a solução é



Página 3


FONTE 1: http://www.brasilescola.com/matematica/inequacao-produto-e-quociente.htm
FONTE 2: http://educacao.uol.com.br/matematica/inequacao-produto-e-inequacao-quociente.jhtm