Os números cíclicos são aqueles que multiplicados por outro número menor ou igual ao número de dígitos de que ele possui, seus números vão se repetindo ciclicamente, passando para o final aqueles que estão na frente.
2 x 142857 = 285714 (note que o 1 e o 4
oram passados para o final)
3 x 142857 = 428571
(o 1 passa para o final)
4 x 142857 = 571428
5 x 142857 = 714285
6 x 142857 = 857142
Se multiplicarmos por 7 o que obtemos é 999999. Isto não é uma casualidade. Esse número (142857) é a parte periódica da divisão 1/7.
O próximo número cíclico é o 0588235294117647. Se multiplicarmos este número pelos números de 1 a 16 acontece o mesmo que com o anterior. Se o multiplicarmos por 17 resulta em 99999999999999999.
Esses números são raros de encontrar. Outra característica curiosa destes números é a forma que se pode obtê-los:
Pegamos um número primo e calculamos seu inverso (1/p). Se a parte decimal é periódica e o período possui tantos dígitos quanto o número primo menos 1, então este é um número cíclico. Quando dividimos 1/7 se obtém 0,142857142857142857. Note que é periódico e que o período possui seis dígitos.
Por exemplo: O primeiro número cíclico é o 142857. Se este número (que possui seis dígitos) for multiplicado pelos números de 1 a 6 obtemos:
2 x 142857 = 285714 (note que o 1 e o 4
oram passados para o final)
3 x 142857 = 428571
(o 1 passa para o final)
4 x 142857 = 571428
5 x 142857 = 714285
6 x 142857 = 857142
Se multiplicarmos por 7 o que obtemos é 999999. Isto não é uma casualidade. Esse número (142857) é a parte periódica da divisão 1/7.
O próximo número cíclico é o 0588235294117647. Se multiplicarmos este número pelos números de 1 a 16 acontece o mesmo que com o anterior. Se o multiplicarmos por 17 resulta em 99999999999999999.
Esses números são raros de encontrar. Outra característica curiosa destes números é a forma que se pode obtê-los:
Pegamos um número primo e calculamos seu inverso (1/p). Se a parte decimal é periódica e o período possui tantos dígitos quanto o número primo menos 1, então este é um número cíclico. Quando dividimos 1/7 se obtém 0,142857142857142857. Note que é periódico e que o período possui seis dígitos.
Nenhum comentário:
Postar um comentário