Olá, Sejam Bem-vindos

Muito obrigado por estarem acessando esse blog. Ele foi feito com especialmente para vocês, meus alunos, para servir como uma ferramenta de comunicação entre nós. Nesse espaço, vocês terão a oportunidade de tirar dúvidas referentes às aulas de Matemática, pedir ajuda em resoluções de exercícios, ter acesso a diversas informações sobre a matéria, e descobrir diversas coisas fantásticas sobre o mundo matemático.

Sintam-se à vontade para comentar, postar sugestões e/ou observações sobre o blog.
Meu objetivo é que ele tenha a cara de vocês!
Espero atender os pedidos e sugestões de todos, na medida do possível. Que esse blog seja um canal de informações, e que possa tornar-se um espaço de interação, de aprendizagens, e de reflexão através de textos que publicarei aqui também.

Vamos unir esforços para que este seja um ambiente agradável para que voltem muitas outras vezes!

E, mais uma vez, bem-vindos!!!!


quarta-feira, junho 16, 2010

A023 - Domínio de uma Função

As funções devem ser caracterizadas de acordo com algumas condições de existência:

Dois conjuntos: um denominado domínio e outro contradomínio.

Uma expressão y = f(x) associando os valores de x e y, formando pares ordenados pertencentes aos conjuntos domínio e contradomínio.


Através de alguns exemplos demonstraremos como determinar o domínio de uma função, isto é, descobrir quais os números que a função não pode assumir para que a sua condição de existência não seja afetada.

a)

Nesse caso o denominador não pode ser nulo, pois não existe divisão por zero na Matemática.
x – 1 ≠ 0
x ≠ 1
Portanto, D(f) = {x Є R / x ≠ 1} = R – {1}.

b)

Nos números reais, o radicando de uma raiz de índice não pode ser negativo.
4x – 6 ≥ 0
4x 6
x ≥ 6/4
x ≥ 3/2
Portanto, D(f) = {x Є R / x ≥ 3/2}

Nenhum comentário:

Postar um comentário